Rho/ROCK-dependent inhibition of 3T3-L1 adipogenesis by G-protein-deamidating dermonecrotic toxins: differential regulation of Notch1, Pref1/Dlk1, and β-catenin signaling
نویسندگان
چکیده
The dermonecrotic toxins from Pasteurella multocida (PMT), Bordetella (DNT), Escherichia coli (CNF1-3), and Yersinia (CNFY) modulate their G-protein targets through deamidation and/or transglutamination of an active site Gln residue, which results in activation of the G protein and its cognate downstream signaling pathways. Whereas DNT and the CNFs act on small Rho GTPases, PMT acts on the α subunit of heterotrimeric G(q), G(i), and G(12/13) proteins. We previously demonstrated that PMT potently blocks adipogenesis and adipocyte differentiation in a calcineurin-independent manner through downregulation of Notch1 and stabilization of β-catenin and Pref1/Dlk1, key proteins in signaling pathways strongly linked to cell fate decisions, including fat and bone development. Here, we report that similar to PMT, DNT, and CNF1 completely block adipogenesis and adipocyte differentiation by preventing upregulation of adipocyte markers, PPARγ and C/EBPα, while stabilizing the expression of Pref1/Dlk1 and β-catenin. We show that the Rho/ROCK inhibitor Y-27632 prevented or reversed these toxin-mediated effects, strongly supporting a role for Rho/ROCK signaling in dermonecrotic toxin-mediated inhibition of adipogenesis and adipocyte differentiation. Toxin treatment was also accompanied by downregulation of Notch1 expression, although this inhibition was independent of Rho/ROCK signaling. We further show that PMT-mediated downregulation of Notch1 expression occurs primarily through G(12/13) signaling. Our results reveal new details of the pathways involved in dermonecrotic toxin action on adipocyte differentiation, and the role of Rho/ROCK signaling in mediating toxin effects on Wnt/β-catenin and Notch1 signaling, and in particular the role of G(q) and G(12/13) in mediating PMT effects on Rho/ROCK and Notch1 signaling.
منابع مشابه
Ginsenoside Rg5: Rk1 Exerts an Anti-obesity Effect on 3T3-L1 Cell Line by the Downregulation of PPARγ and CEBPα
Background: Obesity, a global health problem and a chronic disease, is associated with increased risk of developing type 2 diabetes and coronary heart diseases. A wide variety of natural remedies have been explored for their obesity treatment potential. Objective: The anti-adipogenic effect of ginsenoside Rg5:Rk1 (Rg5:Rk1) on 3T3-L1 mature adipocytes was investigated. Materials and ...
متن کاملmiR-135a-5p inhibits 3T3-L1 adipogenesis through activation of canonical Wnt/β-catenin signaling.
MicroRNAs are endogenous, conserved, and non-coding small RNAs that function as post-transcriptional regulators of fat development and adipogenesis. Adipogenic marker genes, such as CCAAT/enhancer binding protein α (Cebpa), peroxisome proliferator-activated receptor γ (Pparg), adipocyte fatty acid binding protein (Ap2), and fatty acid synthase (Fas), are regarded as the essential transcriptiona...
متن کاملInduction of Dlk1 by PTTG1 inhibits adipocyte differentiation and correlates with malignant transformation.
Pituitary tumor-transforming gene-1 (PTTG1) is an oncogene highly expressed in a variety of endocrine, as well as nonendocrine-related cancers. Several tumorigenic mechanisms for PTTG1 have been proposed, one of the best characterized being its capacity to act as a transcriptional activator. To identify novel downstream target genes, we have established cell lines with inducible expression of P...
متن کاملCCR4-NOT2 Promotes the Differentiation and Lipogenesis of 3T3-L1 Adipocytes via Upregulation of PPARx03B3;, CEBPα and Inhibition of P-GSK3α/β and β-Catenin.
BACKGROUND/AIMS Though CCR4-NOT2 (CNOT2), one of CCR4-NOT complex subunits, was known to be involved in metastasis and apoptosis through transcription and mRNA degradation, its other biological function is poorly understood so far. The aim of this study is to elucidate the molecular role of CNOT2 in the differentiation process of 3T3-L1 preadipocytes. METHODS AND RESULTS CNOT2 was overexpress...
متن کاملDLK1(PREF1) is a negative regulator of adipogenesis in CD105⁺/CD90⁺/CD34⁺/CD31⁻/FABP4⁻ adipose-derived stromal cells from subcutaneous abdominal fat pats of adult women.
The main physiological function of adipose-derived stromal/progenitor cells (ASC) is to differentiate into adipocytes. ASC are most likely localized at perivascular sites in adipose tissues and retain the capacity to differentiate into multiple cell types. Although cell surface markers for ASC have been described, there is no complete consensus on the antigen expression pattern that will precis...
متن کامل